(1) For each formula, determine whether it is in disjunctive normal form, in conjunctive normal form, in both, or in neither.

$1) \ s \lor \neg q \lor s \lor \neg r$	6) $\neg q \lor (\neg r \land s \land p) \lor \neg r$
2) $(\neg p \land r) \lor (q \land \neg q) \lor s$	7) $q \wedge (r \vee r \vee p) \wedge r$
3) $(r \lor q) \land \neg p \land (q \lor \neg (r \lor q) \lor \neg s)$	8) $(r \land q) \lor (\neg p \land q) \lor r$
4) $\neg q \lor \neg (p \land q) \lor (\neg r \land q)$	9) $(p \land \neg q \land r) \lor p \lor \neg q \lor r$
5) $\neg r \land q \land \neg s \land r$	10) $(p \land q) \lor (p \land \neg q) \lor \neg (p \land q) \lor (\neg p \land \neg q)$

(2) Convert the following formulas to disjunctive normal form and simplify them as much as possible:

1) $(p \land \neg p \land q) \lor [q \land (q \lor r)] \lor q$	11) $[(r \rightarrow \neg s) \rightarrow r] \land \{(r \land s) \lor [\neg r \rightarrow \neg (p \rightarrow q)]\}$
2) $\neg q \rightarrow \{\neg p \land [q \lor (\neg p \land \neg q)]\}$	12) $(p \land \neg r \land p) \lor \{[(q \rightarrow q) \rightarrow (p \rightarrow q)] \rightarrow q\}$
3) $\neg [\neg (q \rightarrow r) \lor (r \land q)] \lor \neg (p \rightarrow q)$	13) $(p \leftrightarrow q) \rightarrow (r \leftrightarrow q)$
4) $\neg q \rightarrow \{(r \rightarrow q) \rightarrow \neg [\neg r \land (\neg q \lor \neg p)]\}$	14) $[p \land \neg(s \rightarrow q)] \lor [(p \lor q) \land (s \lor p)] \lor (s \land \neg q)$
5) $(p \leftrightarrow q) \land (q \leftrightarrow r)$	15) $[(p \rightarrow q) \rightarrow p] \leftrightarrow \neg p$
6) $(\neg p \rightarrow q) \land (\neg p \rightarrow \neg q)$	16) $[(p \rightarrow q) \rightarrow q] \land \neg (p \rightarrow \neg q)$
7) $\neg \{[p \land (p \rightarrow q)] \rightarrow (q \land \neg r)\} \rightarrow q$	17) $\{\neg [r \lor \neg (s \rightarrow p)] \land (s \rightarrow \neg p)\} \rightarrow (r \land s)$
8) $[(p \land \neg q) \lor \neg p] \rightarrow \neg [(r \lor q) \rightarrow \neg q]$	18) $p \rightarrow [q \leftrightarrow (r \land s)]$
9) $s \leftrightarrow (q \wedge r)$	19) $\neg(\neg r \rightarrow \neg \{q \lor \neg [p \lor \neg (q \lor r)]\})$
10) $(p \land q) \leftrightarrow (q \rightarrow r)$	20) $p \leftrightarrow (r \leftrightarrow q)$

(3) Determine by logical transformations if the following pairs of formulas are logically equivalent.

1)	$\neg(\neg p \rightarrow q)$ $\neg(\neg q \rightarrow p)$	6)	$p \to [(p \land \neg q) \to r]$ $r \lor q \lor \neg p$
2)	$(p \rightarrow q) \rightarrow \neg p$ $\neg p \land \neg q$	7)	$(p \land \neg q) \rightarrow r$ $\neg r \rightarrow (\neg p \lor q)$
3)	$(p \rightarrow q) \lor (r \rightarrow q)$ $r \rightarrow (p \rightarrow q)$	8)	$(p \land q) \rightarrow (r \land s)$ $[(p \lor q) \rightarrow s] \land [\neg r \rightarrow (\neg q \land \neg p)]$
4)	$p \rightarrow (\neg q \land r)$ $(p \rightarrow \neg q) \land (p \rightarrow r)$	9)	$p \land \neg q \land \neg r \land \neg s$ $p \rightarrow s) \land \neg (\neg q \rightarrow r)$

5) $(p \lor q) \land \neg (p \land q)$ $p \leftrightarrow \neg q$

(4) Determine by logical transformations which of the following five sentences are logically equivalent:

- 1) John will take to drinking, if he gets fired or Mary leaves him.
- 2) John will take to drinking, if he gets fired, or he will take to drinking if Mary leaves him.
- 3) John will take to drinking, if he gets fired and Mary leaves him.
- 4) John will take to drinking if he gets fired, but he will also take to drinking if Mary leaves him.
- 5) If John gets fired, then if Mary leaves him, he will take to drinking.
- (5) Prove by logical transformations that the following formulas are tautologies.¹

1)	$\neg(p\lor q) \rightarrow \neg p$	5)	$\neg p ightarrow \neg (p \land q)$
2)	$(p \rightarrow q) \rightarrow [(r \lor p) \rightarrow (r \lor q)]$	6)	$\neg p \to [(p {\rightarrow} q) \lor q]$
3)	$[p \lor (q \land \neg r)] \to [(p \lor q) \land (r \to p)]$	7)	$[p \land (q \lor r)] \to [(p \land q) \lor (p \land r)]$
4)	$[(p \rightarrow q) \land (r \rightarrow s)] \rightarrow [(p \lor r) \rightarrow (q \lor s)]$	8)	$[(p \rightarrow q) \lor r] \rightarrow \neg [(p \land \neg q) \land \neg r]$

¹ The formulas are the same as in exercise (1) from 1.4 Indirect proof. You can compare the two methods.