- (1) Symbolize the following sentences in the language of modal propositional logic.
 - 1) John will not necessarily come to the meeting.
 - 2) Necessarily, everything is finite or infinite.
 - 3) If you are obliged to vote, then you are allowed to vote.
 - 4) Smoking is forbidden in the room but is allowed in the hallway.
 - 5) This is not only possible; it is possible by necessity.
 - 6) This is necessary, but it is not necessary by necessity.
 - 7) If this happened once, it will happen in the future.
 - 8) It is possible that everything is necessarily finite.
 - 9) This is not necessarily necessary, but it is possible by necessity.
 - 10) If it is permissible for this to be mandatory, it is mandatory for it to be permissible.
 - **11)** If this ever happens, it has always been a fact that it will.
 - 12) If this happened, it will always be a fact that it did.
 - 13) If this is necessary, it is a fact, and if it is a fact, it is possible.
 - 14) If it has always been a fact that this will happen, then there will come a time when it has already happened.
 - 15) This already happened, but there was a time when it has not happened yet.
- (2) Are the following pairs of expressions logically equivalent? If not, change one of the modal operators in the first expression so that they become equivalent.

1)	ר¢α סםרα סםרα	6)	רם≬םםα םסחיα
2)	רר α−◊¬α	7)	٥٥٥٩ م-םם-α
3)	םרם◊ר αרםםרם	8)	מריםםםר αרםםרמ≬
4)	α - ¢ריםα	9)	◊◊¬□□¬α ◊◊◊¬◊¬α
5)	α◊◊α α−□□−α	10)	◊◊□□□□ ∧□□□◊α

(3) Prove with diagrams that the following schemes are logically valid with respect to semantic rule (1).

1)	$\Box \alpha \to \Diamond \alpha$	6)	$(\alpha \lor \beta) \to (\alpha \lor \beta)$
2)	$\Diamond \Box \alpha \to \Diamond \alpha$	7)	$\Box \alpha \to \Box \Box \Box \Box \Box \alpha$
3)	$[\Box(\alpha {\rightarrow} \beta) \land \Box \neg \beta] {\rightarrow} \neg \alpha$	8)	$\Diamond(\alpha \lor \beta) \to (\Diamond \Diamond \alpha \lor \Diamond \beta)$
4)	$(\Diamond \alpha \land \Diamond \beta) \rightarrow \Diamond (\alpha \lor \beta)$	9)	$[\Box(\alpha \lor \beta) \land \Box(\alpha {\rightarrow} \gamma) \land \Box(\beta {\rightarrow} \gamma)] \rightarrow \Box \gamma$
5)	$[\Box(\alpha \lor \beta) \land \Box \neg \alpha] \to \Box \beta$	10)	$\neg \Diamond (\alpha \lor \beta) \rightarrow \Box (\neg \alpha \rightarrow \neg \beta)$

- (4) Prove with diagrams that the following schemes are logically valid (with respect to semantic rule (2)) without imposing any conditions on the accessibility relation.
 - 1) $\Box(\alpha \rightarrow \beta) \rightarrow (\Box \alpha \rightarrow \Box \beta)$
 - 2) $(\Box \alpha \land \Box \beta) \rightarrow \Box (\alpha \land \beta)$
 - 3) $\Box \alpha \rightarrow \Box (\alpha \lor \beta)$
 - 4) $(\Box \alpha \land \Diamond \beta) \rightarrow \Diamond (\alpha \land \beta)$
 - 5) $\Box(\beta \rightarrow \alpha) \rightarrow \neg \Diamond(\neg \alpha \land \beta)$
 - 6) $\Box(\alpha \rightarrow \beta) \rightarrow (\Diamond \alpha \rightarrow \Diamond \beta)$
 - 7) $\Box\Box\alpha \rightarrow \Box(\Diamond \alpha \lor \Box\beta)$
- (5) Prove with diagrams that the following schemes are logically valid when the accessibility relation is **reflexive**.
 - 1) $\alpha \rightarrow \Diamond \alpha$
 - 2) $\Box \alpha \rightarrow \Diamond \Diamond \alpha$
 - 3) $\Box(\Box\alpha \rightarrow \alpha)$
 - 4) $\Box(\alpha \rightarrow \Diamond \alpha)$
 - 5) $\Box\Box\Box\alpha \rightarrow \alpha$
 - 6) $\Box(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \delta\beta)$
 - **7)** $[\Box(\neg\alpha \rightarrow \beta) \land (\alpha \rightarrow \Box\beta)] \rightarrow \Diamond\beta$
- (6) Prove with diagrams that the following schemes are logically valid when the accessibility relation is *transitive*.
 - 1) $\Diamond \Diamond \alpha \rightarrow \Diamond \alpha$
 - 2) $\Diamond \Diamond \Diamond \alpha \rightarrow \Diamond \alpha$
 - 3) $\Box \alpha \rightarrow \Box \neg \Diamond \Diamond \neg \alpha$
 - 4) $[\Diamond \Diamond \Diamond (\alpha \rightarrow \beta) \land \Box \alpha] \rightarrow \Diamond \beta$
 - 5) $\Box(\alpha \rightarrow \beta) \rightarrow \Box(\Box \alpha \rightarrow \Box \beta)$
 - 6) $\Box \Diamond \alpha \rightarrow \Box \Diamond \Box \Diamond \alpha$
- (7) Prove with diagrams that the following schemes are logically valid when the accessibility relation is *symmetric*.
 - 1) $\Diamond \Box \alpha \rightarrow \alpha$
 - 2) $\Diamond \Box \alpha \rightarrow \Box \Diamond \alpha$

- (8) Prove with diagrams that the following schemes are logically valid when the accessibility relation is *symmetric* and *transitive*.
 - 1) $\Diamond \Box \alpha \rightarrow \Box \alpha$
 - 2) $\Box(\Box \alpha \lor \beta) \rightarrow (\Box \alpha \lor \Box \beta)$
 - 3) $\Diamond \Box \alpha \rightarrow \Box \Box \alpha$
- (9) Prove with diagrams that the following schemes are logically valid when the accessibility relation is **reflexive** and **transitive**.
 - 1) $\Diamond \Diamond \Box \alpha \rightarrow \Diamond \alpha$
 - 2) $(\Box \alpha \lor \Box \Box \Box \beta) \rightarrow (\Box \Box \Box \alpha \lor \Box \beta)^1$

¹ You should consider different cases in the proof.